Airflow Modeling of Large Occupied Spaces

Seminar 31: CFD Modeling of Large Occupied Indoor Spaces
ASHRAE Winter Meeting
January 30, 2001
Atlanta, Georgia

Ventilating Large Occupied Spaces

- Purposes of Ventilation
 - Indoor Air Quality
 - Comfort
 - Safety

- Applications
 - Arenas
 - Stadiums
 - Theaters
 - Auditoriums
 - Museums
 - Factories
 - Airports

Ventilation Concerns

- Places of assembly
 - indoor air conditions ashrae comfort recommendations
- Museums, libraries, & archives
 - high relative humidity
 - temperature and humidity fluctuations
- Industrial environments
 - osha standards
 - heat removal and harmful contaminants

Why Perform Airflow Modeling?

- Investigate design performance ahead of time large spaces are expensive to fix after built
- Demonstrate to clients and other involved parties how different ventilation strategies work so that they may better evaluate performance vs. cost issues
- Better understand alternatives to mixing ventilation displacement ventilation / radiant cooling / natural ventilation
- Streamline diffuser placement avoiding high velocities and non-uniform temperature distributions in occupied zones

What is Airflow Modeling

- Numerical approach to solve the complex governing equations of airflow
 - continuity / momentum / energy / contaminant transport
- Requires discretizing a computer model of the space -> mesh not all features of the geometry are relevant to airflow
- Requires specification of boundary conditions
 Flows / boot sources / contaminant sources / wall PCs

Boundary Conditions

- Ventilation system
 - location, types, and performance characteristics of inlet diffusers and exhausts

flow rates / temperature / humidity / contaminant level

- Thermal loads
 occupants / lighting / equipment
- Contaminant sources
 location / type / strength
- Building heat loads

Physical Models

Turbulence

- unsteady, aperiodic motion in which all three velocity components fluctuate → mixing matter, energy, momentum, and contaminants
- time-averaged statistics of turbulent velocity fluctuations are modeled using functions containing empirical constants and information about the mean flow

Radiation

- Radiative heat flux between surfaces depends on
 - → surface temperature
 - → surface emissivity
 - → form factor from one surface to the other
- Since air velocities are relatively low, heat transfer is dominated by natural convection and radiation

Thermal Comfort Predictions

- Various methods to estimate perceived thermal comfort are available
- Methods can use information from airflow modeling simulations to compute comfort

- design input
 - → metabolic rate
 - → clothing assumptions
- local info needed from simulation
 - → relative humidity
 - → air temperature
 - → air velocity
 - → mean radiant temperature

Special Considerations

- Mesh size turnaround time proportional to mesh size
 - large physical space implies a large number of computational cells will be necessary
 - complex geometries and/or numerous interior objects will also demand more computational cells
- Unstable airflow patterns
 - buoyancy effects + large spaces -> high Rayleigh numbers
 difficult to obtain converged steady-state solutions

Archimedes and Rayleigh Numbers

$$Ar = \frac{Gr}{Re^2} = \frac{g\mathbf{b}\Delta TL}{U^2}$$

Strength of natural convection compared to forced convection

$$\mathbf{R}a = \frac{g\mathbf{b}\Delta TL^3}{\mathbf{n}\mathbf{a}}$$

Related to likelihood of instabilities leading to chaotic motion

Ventilation of an Ice Rink

- Modeled interior region of a collegiate ice rink
- Boundary conditions:
 - airflow
 - occupancy
 - lighting heat loads
 - other heat loads
 - walls

- 1.1 ACH
- Archimedes No. = 2.4
- Rayleigh No. = 10^12

- heat load 237 kW
 - occupants 70%
 - lighting 27%
 - other 3%

Computational Mesh

Airflow Patterns in an Ice Rink

Airflow Patterns in an Ice Rink

Mean Age of Air at Skating Surface

School Auditorium Displacement Ventilation

- Modeling airflow patterns and predicting thermal comfort helps allow architects and engineers to explore new ventilation approaches
- 2.6 ACH
- Archimedes No. = 600
- Rayleigh No. = 10^12
- heat load 90 kW
 - occupants 70%
 - lighting 30%

School Auditorium Displacement Ventilation

Cooling Ventilation of Exhibition Space

- Circular ceiling diffuser supplies cool air for occupant comfort in a large 60'x54'x60' section of an exhibition space
- Model included loads from overhead lighting as well as occupants
- Symmetry accounted for on two vertical surfaces
 - 2.2 ACH
 - Archimedes No. = 1.1
 - Rayleigh No. = 10^13
 - heat load 43 kW
 - occupants 87%
 - lighting 4%
 - other 9%

particle traces colored by temperature

Accuracy

- Convergence does not guarantee accuracy
- Accuracy depends on
 - numerical scheme: 2nd-order is more accurate than 1st-order
 - resolution of the mesh: grid-independent solutions are desired
 - accuracy of boundary conditions
 - accuracy of physical models (i.e., turbulence models)
 - accuracy of modeling assumptions
 - → setting up the geometry
 - →modeling various processes (i.e., smoke from a fire)

Summary

- Large occupied spaces are inherently large financial projects for which designers need to determine a priori how well the proposed ventilation system will perform
- Airflow modeling can be used in design phase
 - airflow velocity distribution
 - temperature distribution
 - relative humidity distribution
 - thermal comfort predictions